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Abstract

Statistical inference on multiple parameters often involves a prelim-

inary stage of selection. Such situations may arise when θ is of interest

only if its estimator X is large enough in either direction, or when there

is a physical limitation for observing X within ±c. Since the selec-

tion procedure is based on the primary data, it introduces a conditional

distribution of the data at hand, which should be accounted for when

making subsequent inferences. In this paper we suggest three different

methods to construct confidence intervals for a location parameter while
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conditioning on its estimator being greater in absolute value than some

constant threshold. By way of definition they all offer False Coverage-

statement Rate control for parameters selected from a larger pool in the

above way.

Two of these methods are the primary focus of this paper; Relying

on the principle set forth by Benjamini, Hochberg and Stark (1998),

they offer not only valid confidence intervals in face of selection, but are

also short and at the same time make early sign determinations - they

stop including parameter values of opposite signs for relatively small

values of |X|. Following a simulation study we find that one of the two,

the Conditional Quasi-Conventional confidence interval, offers a good

balance between length and sign determination while protecting from

the effect of selection.

Keywords: Selective Inference, False Coverage Rate, Conditional Confidence

Intervals

1 Introduction

Throughout this paper, let Y = θ + Z , where the density of the random

variable Z is unimodal and symmetric about 0, and assume that we are inter-

ested in the value of the parameter only if |Y | is big enough say bigger than c.

Alternatively, we only observe X = (Y ||Y | ≥ c). This conditional distribution

depends on θ = E(Y ), and a confidence interval should be constructed for θ

upon observing X. Although the results of this paper are applicable to any

such distribution, we will assume that Z ∼ N(0, 1) and will denote its density,
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as usual, by φ(z), and its cumulative distribution function by Φ(z) . Then,

fX(x; θ) =


(1− Φ(c− θ) + 1− Φ(c+ θ))−1φ(x− θ), |x| ≥ c

0, otherwise

. (1)

In other words, the density of the observed random variable X is zero on

(−c, c), and is proportional to that of Y elsewhere. It is important to notice

that the conditioning on passing a constant threshold materially alters the

role of the parameter θ (at least for small values it takes): while it is a mere

location parameter for Y (ie. Y −θ has a distribution invariant of θ), it reflects

both the location and shape for X.

In this paper we suggest three different procedures for constructing two-

sided confidence intervals for θ = E(Y ). All three utilize the general duality

between a family of α level tests of the hypothesis E(U) = ω and a (1 − α)

level confidence procedure (Lehmann, 1986), by first constructing a family of

1 − α acceptance regions {A(ω) : ω ∈ Ω}, and then inverting them to obtain

a 1− α confidence set S(U) := {ω : U ∈ A(ω)}.

The first procedure is rather straightforward, and in some sense might be

considered the equivalent of the conventional confidence interval in the uncon-

ditional normal case. The other two follow the principle set up by Benjamini,

Hochberg and Stark (1998, hereafter BH&S) whereby a confidence interval can

serve the dual goal of (i) bounding the parameter within a short interval while

(ii) avoiding parameters of opposite signs.
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Property (ii) is referred to as offering weak sign determination. Both op-

ponents and even some proponents of hypothesis testing agree that a null

hypothesis such as θ = 0 is an ideal never to be found in practice (Pratt, 1961,

Tukey, 1991, BH&S, 1998). Therefore, a confidence interval that includes 0

but no negative values has weakly determined the sign to be nonnegative, and

it is an error only if θ < 0. We too adopt this point of view.

In the conditional approach taken here, the strategy remains the same as the

one applied by BH&S in the symmetric, unimodal case. However, the loss of

symmetry and the different role of θ in the conditional case, in that it is no

longer a mere shift parameter, introduce complications in adopting the original

constructions.

The proposed confidence intervals answer another rarely addressed yet im-

portant concern inherent in many current large problems. In these problems,

confidence intervals are made on a limited set of parameters of interest which

are selected from the much larger pool of potential parameters based on the

value of their estimators. Some examples are: confidence intervals constructed

for associations of genetic markers with disease, only for the markers with p-

values below a specified threshold; genes are chosen based on whether their

expression level differ between two groups by more than 3-fold; risk factors

for disease are chosen based on significance, and then their effect is estimated;

regions in the brain that are highly correlated with a response are chosen

and an estimator of the response is given only for the selected ones. In these

situations, and in many others, a parameter is selected only if its associated

estimator exceeds (in its absolute value) some constant threshold or, similarly,
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if the corresponding p-value is small enough.

The ongoing practice is to construct the usual (marginally correct) 95%

confidence intervals. Such a practice is defended by arguing that these marginal

confidence intervals offer ”coverage on the average” over all parameters esti-

mated, and since there is no interest in simultaneous inference their level of

coverage suffices: we are accustomed to the 5% level of error, so here too

we can bear the fact that 5% of the confidence intervals will not cover their

respective parameters (see e.g. Gelman and Hill, 2009).

Benjamini and Yekutieli (2005) addressed this issue in generality. They

argue that usually in large multiple inference problems a selection process is

taking place, either formally via testing or informally via highlighting in the

abstract, and interest lies only in few selected parameters out of the many

estimated. They demonstrate that when the coverage of the regular 95%

confidence intervals is considered only over the selected parameters, even if on

the average and not simultaneously, the non-coverage can deteriorate to be

much more than 5%. So even if there is no interest in the strong protection

from non-coverage error offered by simultaneous intervals, one should still

worry about ”coverage on the average over the selected ones” - a coverage

property which is not guaranteed with the ongoing practice. Formally, they

introduced the False Coverage-statement Rate (FCR),

FCR = E

(
# non-covering intervals

# intervals selected

)
,

where the ratio is 0 if no interval is selected. They then address the problem

of how to construct a set of intervals that offer FCR ≤ q.

5



Using any of the three methods we offer here to construct 1− q confidence

intervals for each selected parameter indeed assures FCR ≤ q. By constructing

each interval based on the conditional distribution, the effect of selection is

incorporated into the marginal coverage probability, and conditional on the

number of selected parameters M ′ = m′, we have

E

(
#of non-covering intervals of the m′constructed

m′

∣∣∣∣M ′ = m′
)
≤ 1

m′
m′q = q,

and hence holds when expectation is further taken over M ′. Interstingly, the

FCR confidence intervals offered by Benjamini and Yekutieli (2005) were the

initial motivation for the current work. For Yi ∼ N(θi, 1), i = 1, ...,m, consider

the selection rule picking only those θi for which |yi| > c, and denote by m′

the size of this subset. In their procedure, a (1− m′α
m

) interval is constructed

for each of the selected parameters, regardless of the size of |yi|.

In contrast, from a conditional point of view, when |yi| >> c even the

yi − z1−α/2 < θi < yi + z1−α/2 has approximately 1− α coverage (because the

conditioning effect is negligible), so an interval at a level close to 1−α should be

sufficient. By the constructions offered in this paper we attempt to avoid the

uniform inflation of CQC their confidence intervals and this is indeed achieved

by constructing conditional intervals. Once having the conditional confidence

intervals at hand, we wanted the constructed intervals to often make a sign

determination, that is, to avoid including parameter values of opposite signs.

Combining the approach of BH&S with the conditional approach led to the

rest of the developments offered here.
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The work by Finner (1994) addresses a similar concern to ours, that of

confidence interval following the rejection of a two sided hypothesis, and the

approach is similar in that acceptance regions are constructed and inverted.

Alas Finner (1994) has constructed one-sided intervals, giving up entirely on

their length (being always infinite). Interestingly, for large values of the ob-

servable X, his confidence interval reverts to the usual unconditional one-sided

interval, just as the confidence intervals constructed here revert in the same

situation to the regular two-sided interval.

A construction of confidence intervals of bounded intervals for θ = E(Y )

based on a conditional distribution is given in Zhong and Prentice (2008). The

methods proposed here are different in a number of essential ways: first, our

methods yield exact confidence intervals, while Zhong and Prentice provide

“asymptotic” confidence intervals, in that they assume asymptotic distribu-

tions for certain terms used to obtain their intervals. Second, while it is not

clear what the properties of these asymptotic intervals are, the two main pro-

cedures we propose inherently possess favorable sign determination properties,

i.e, when using the confidence interval to infer about the sign, they are more

powerful.

2 Shortest Acceptance Region

As a first attempt at constructing a family of acceptance regions, we associate

each value of θ = E(X) with the shortest possible region of the observation

space that captures a probability of 1− α. In general, for each value assumed
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by θ, this is the set A(θ) = {x : fθ(x) > Kθ}, where Kθ is such that P (A(θ)) =

1− α.

In the usual normal case, where X = Y , these shortest regions are symmet-

ric around θ, A(θ) = {x : z1−α/2 < x− θ < z1−α/2}, and when inverted, yield

the conventional, symmetric confidence interval, x ± z1−α/2. In our case, θ is

no longer a simple location parameter, and the form of these retention regions

is not as trivial. In particular, we lose the symmetry which characterized the

former situation, where once we found the shortest region for a particular value

of θ (6= 0), we have essentially found them all (because, except for θ = 0, they

are translations of each other). Still, the fact that the original distribution

(that of Y ) is symmetric and unimodal makes it easier to obtain these regions

even in the ’truncated’ case. Indeed, using the fact that on the support of

fθ, the density of X is proportional to that of Y (for fixed c and θ) is key to

constructing {A(θ)}.

Let Qc(θ) = Pθ(|X| > c) = 2 − Φ (c− θ) − Φ (c+ θ). As proved in the

Appendix, the shortest acceptance regions for a given cutoff c are formally

given by

ASrt(θ) =



{
x : x ∈ θ ± Φ−1

(
1− α

2
Qc(θ)

)}
\ (−c, c), 0 ≤ θ < θ1

(c, θ + Φ−1[ Φ(c− θ) + (1− α)Qc(θ) ]) , θ1 ≤ θ < θ2{
x : x ∈ θ ± Φ−1

[
1
2

(1 + (1− α)Qc(θ))
]}
, θ2 ≤ θ,

(2)

with ASrt (θ) = −ASrt (−θ) for θ < 0. The parameters θ1 and θ2 are the
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solutions to

Φ(c+ θ1)− Φ(c− θ1) = (1− α)Qc(θ1) (3)

and

2Φ(θ2 − c)− 1 = (1− α)Qc(θ2). (4)

Upon inverting these acceptance regions, the marginal confidence set may

consist of disjoint intervals. Realizing that in most situations interest will be

in confidence intervals, we take the convex hull of the confidence region to get

the interval SSrt(X) = (l(X), u(X)). The symmetry of the acceptance regions

about 0 implies the symmetry of the confidence intervals, so that SSrt(X) =

−SSrt(−X) for X < −c. For X > c, the upper end u(X) is the value of θ

which solves

2Φ(X − θ) = αQc(θ),

and the lower end is

l(X) =


θ s.t. 2(1− Φ(X − θ)) = αQc(θ), c < X < x1

max{θ : Φ(X − θ)− Φ(c− θ) = (1− α)Qc(θ)}, x1 < X < x2

θ s.t. 2Φ(X − θ) = (1− α)Qc(θ), x2 < X

,

(5)

where

x1 = sup {x : x ∈ ASrt(θ1)} = c+ 2θ1 (6)

and
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Figure 1: (a) Acceptance regions vs. θ for the Shortest-Acceptance-Region
method (θ ≥ 0). Critical values for θ1 and θ2 are 1.18 and 2.67, respectively.
(b) Confidence intervals vs. observed x for the Shortest-Acceptance-Region
method (x > c). Critical points x1 and x2 equal 3.36 and 4.34, respectively.
The boundaries of the standard (unadjusted) confidence interval are plotted
with dashed lines.

x2 = sup {x : x ∈ ASrt(θ2)} = 2θ2 − c . (7)

3 A Conditional Modified Pratt (CMP) Pro-

cedure

Even though the above procedure yields a valid confidence interval for θ, for

a testing procedure acceptance regions that avoid crossing zero to the side

opposite to the sign of θ, have more power in determining the sign of the pa-

rameter. For a unimodal, symmetric, random variable, Pratt (1961) observed

that a confidence interval designed to have the shortest expected length at
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θ = 0 enjoys a further favorable sign determination property. He shows that,

in general, Eθ |S(X)| =
∫
ν

Pθ{ν ∈ S(X)}dν. Reasoning in acceptance regions,

the right term is equivalent to
∫
ν

Pθ{x ∈ A(ν)}dν =
∫

1− Pθ{x /∈ A(ν)}dν,

which is minimized when A(ν) is a maximum power test for testing the hy-

pothesis that the true value is ν aginst the alternative θ. Taking θ = 0, A(ν)

is a one-sided (1 − α) ray that is “flushed” to the right for positive values of

ν, and to the left for negative ones. The corresponding confidence interval

(obtained by inversion) is (0, X + cα) for x > 0 and (X − cα) for x < 0 , and

is unbounded in length when |x| grows big.

A modification of Pratt’s procedure is suggested in BH&S in order to have

a bounded length in the unimodal, symmetric case. Namely, they were looking

for a confidence procedure corresponding to the most powerful test of E(Y ) = θ

against the alternative E(Y ) = 0, subject to the restriction that the length

of the confidence interval never exceed r times the length of the conventional

interval, 2cα/2. In the unimodal, symmetric case, |A(θ)| ≤ C for every θ is a

necessary condition to guarantee |S(x)| ≤ C for every x. Moreover, the family

of CMP tests against EX = 0 under the constraint |A(θ)| ≤ C (for every θ),

is easily shown to yield confidence intervals with maximum length C. Thus,

this family is optimal.

In our case, it is more difficult to see how the restriction on the CI length

constraints the structure of the family of acceptance regions. The facts that θ is

no longer a mere shift parameter and that the support of fθ(y) is not the whole

line anymore, pose serious difficulties in solving the restricted optimization

problem. Therefore, we directly restrict the length of the acceptance region.
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While in the unimodal, symmetric case, the shortest (1−α) region for every θ

is of length 2cα/2, in the truncated case there is no such common quantity, and

the length of the shortest region for θ depends on θ, as shown in Figure (2) for

Y ∼ N(θ, 1) and c = 1. Note that the lengths of the conditional acceptance

regions are shorter than 2z1−α/2, because the decay of the conditional density

is faster than that of the unconditional one. A natural thing to do, then, is

allow each A(θ) to extend as much as r times the length of the shortest valid

region for that specific θ, and among these seek for a retention region ACMP(θ)

which corresponds to a CMP test for EX = θ agains the alternative EX = 0.

Since fθ is proportional to gθ on [−c, c]c (for any fixed θ), the ordering

of x values in [−c, c]c by the likelihood ratio under the conditional densities

fθ(x) is the same as the ordering by the likelihood ratio of the unconditional

densities gθ(x). Thus, if there were no restriction on the length of the retention

region, for any θ > 0 the desired region would be {x ∈ [−c, c]c : x > tθ}, where

tθ is such that this set holds exactly 1 − α probability (under fθ). As the

length of the retention region is constrained, the best we can do (in terms of

power) is take, for any θ > 0, ACMP(θ) =
{
x ∈ [−c, c]c : t̄θ,r < x < t̃θ,r

}
, where(

t̄θ,r, t̃θ,r
)

is the pair with biggest value of the first component among all pairs

which satisfy P (ACMP(θ)) = 1 − α and |ACMP(θ)| = r |AS(θ)|. For θ < 0, we

clearly have ACMP(θ) = −ACMP(−θ), and ACMP(0) is chosen to be symmetric

around zero. Let θ̃1 be the value of θ ∈ (0, θ1) which solves

Φ(c+ r |ASrt(θ)| − θ)− Φ(c− θ) = (1− α)Qc(θ), (8)
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Figure 2: Length of the shortest acceptance region vs θ for α = .05 and c = 1.
When θ grows big, the size of the approaches 2z1−α/2 ≈ 3.92, the length of the
standard acceptance region for the usual normal random variable (Note: when
the acceptance region consists of disjoint intervals, the length is taken to be the
sum of lengths of these intervals)

13



and for 0 < θ < θ̃1 denote by g1(θ) the value of x ∈ (inf ASrt(θ),−c) =

(θ − Φ−1(1− α
2
Qc(θ)),−c) for which

1− Φ(θ − x) + 1− Φ(c+ r |ASrt(θ)| − (−c− x)− θ) = αQc(θ), (9)

and by g2(θ) the biggest value of x ∈ (c,∞) for which

Φ (x+ r |ASrt(θ)| − θ)− Φ(x− θ) = (1− α)Qc(θ). (10)

Then, as shown in the Appendix,

ACMP(θ) =



[
−Φ−1

(
1− α

2
Qc(θ)

)
,Φ−1

(
1− α

2
Qc(θ)

)]
\ (−c, c), θ = 0

(g1(θ), c+ r |ASrt(θ)| − (−c− g1 (θ))) \ (−c, c) , 0 < θ < θ̃1

(g2(θ), g2(θ) + r |ASrt(θ)|) , θ > θ̃1

,

(11)

with A(θ) = −A(−θ) for θ < 0.

The confidence set obtained by inverting this family of tests and taking its

convex hull, is

SCMP(X) =



(l1(X), u(X)), X < c̄r(0)

[0, u(X)), c̄r(0) < X < cα/2

(0, u(X)), cα/2 < X < c̃r(0)

(l2(X), u(X)), c̃r(0) < X < c+ r
∣∣∣ASrt(θ̃1)

∣∣∣
(l3(X), u(X)), X > c+ r

∣∣∣ASrt(θ̃1)
∣∣∣

. (12)
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In the above, u(x) is the root (w.r.t. θ) such that

Φ(x+ r |ASrt(θ)| − θ)− Φ(x− θ)− (1− α)p(c, θ) = 0; (13)

l1(x) is the value of x ∈ (−θ̃1, 0) for which

1− Φ(x− θ) + 1− Φ(θ − x+ 2c+ r |ASrt(θ)|)− αp(c, θ) = 0; (14)

l2(x) is the value of x ∈ (0, θ̃1) such that

1− Φ(x− θ) + 1− Φ(θ − x+ 2c+ r |ASrt(θ)|)− αp(c, θ) = 0; (15)

l3(x) is the smaller root of

Φ(x− θ)− Φ(x− r |ASrt(θ)| − θ)− (1− α)p(c, θ) = 0; (16)

c̄r(0) is the smaller root (w.r.t. x), and c̃r(0) the bigger root, of

1− Φ(x) + 1− Φ(2c+ r |ASrt(0)| − x)− 2α(1− Φ(c)) = 0 (17)

and

cα/2 = Φ−1(1− α

2
(1− Φ(c) + 1− Φ(c))). (18)
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Figure 3: (a) Conditional Modified Pratt acceptance regions for r = 1.4. Crit-
ical value θ̃1 is .96. The boundaries of ACMP (0) are marked with filled circles.
(b) Conditional Modified Pratt confidence intervals for r = 1.4. Critical points

c̄1.4(0), cα/2, c̃1.4(0) and c + 1.4
∣∣∣ASrt(θ̃1)

∣∣∣ equal 2.15, 2.41, 3.8, 4.46, respec-

tively. Dotted line indicates that 0 is not included in the interval (but only in
its closure), that is, a strict sign determination occurs. The boundaries of the
standard (unadjusted) confidence interval are plotted with dashed lines. Note
that while a strict sign determination occurs starting at the same point (cα/2)
for the CMP and the Shortest-Acceptance-Region methods, the CMP interval
enjoys an earlier weak sign determination. CMP interval length approaches
2rz1−α/2 ≈ 5.49 as x→∞.
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4 Conditional Quasi-Conventional (CQC) Con-

fidence Intervals

A different approach to compromise between CI length and more power to

determine the sign of the parameter, further suggested by BH&S, is minimizing

a weighted sum of the length of the acceptance region |A(θ)|, and the extent

to which the acceptance region crosses the origin subject to a size constraint.

As in the usual symmetric, unimodal case, this approach yields conditional

confidence intervals which revert to the conventional symmetric interval when

|x| is large.

4.1 Deriving the Family of Acceptance Regions

Formally, we wish to associate each value of θ 6= 0 with a region

ACQC(θ) = arg min
A
{λ |A(θ)|+ sup

x∈A(θ):sgn(x)6=sgn(θ)

|x|} (19)

where A is any region which satisfies Pθ(X ∈ A) ≥ 1− α.

In the usual symmetric, unimodal case, the optimal set of acceptance re-

gions corresponding to a CI with length that never exceeds r times the length

of the conventional, symmetric one, has a relatively simple structure. In fact,

for a given α, it is completely characterized by the quantity c̄ = infθ>0 inf{y :

y ∈ ACQC(θ)}, which is determined by r (or, equivalently, by λ). We use the

exact same optimization setup (19) to obtain the family of acceptance regions

in our conditional setting. However, now there is considerable complexity in
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determining the value of λ corresponding to a resulting CI with a certain maxi-

mum length. Therefore, we first show how to obtain the acceptance regions for

a prescribed λ, and later discuss the relation between λ and the corresponding

maximum CI length.

Proposition 4.1. For any λ > 0, a solution to the optimization problem (19)

is given by

ACQC(θ) =



(−Φ−1{1− α
2
p(c, 0)},Φ−1{1− α

2
p(c, 0)}) \ (−c, c), θ = 0

(−c− d?(θ), c+ h1(θ)) \ (−c, c), 0 < θ < θ′1

(c, c+ h2(θ)), θ′1 ≤ θ < θ1

ASrt(θ), θ1 ≤ θ,

(20)

with ACQC(θ) = −ACQC(−θ) for θ < 0, and where

(i) θ′1 is the value of θ satisfying

1 + λ

(
1− φ(c+ θ)

φ(Φ−1(2− Φ(c+ θ)− αQc(θ)))

)
= 0, (21)

and θ1 is given in section 2

(ii) d?(θ) is the value of d which solves

1 + λ

(
1− φ(c+ d+ θ)

φ(Φ−1(2− Φ(c+ d+ θ)− αQc(θ)))

)
= 0 (22)
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(iii) h1(θ) is the value of h which solves

1− Φ(c+ h− θ) + 1− Φ(d?(θ) + c+ θ) = αQc(θ) (23)

(iv) h2(θ) is the value of h which solves

Φ(c+ h− θ)− Φ(c− θ) = (1− α)Qc(θ) (24)

(v) ASrt(θ) is the shortest acceptance region for θ, given in section 2.

Proof. For θ = 0, the accpetance region can be chosen arbitrarily, and we

take it, as usual, to be of the form (−x, x) \ [−c, c], where x is such that

Pθ=0 (A(0)) = 1 − α. When θ ≥ θ1, it is obvious (from the discussion in

section 2) that the shortest region possible, ASrt(θ), is optimal.

For 0 < θ < θ1, denote by d = d(θ) the amount of extension of any

candidate A(θ) to the left of −c, and by l = l(θ) the total length, |A(θ)|. A

solution to (19) will be immediate after proving the following

Claim 1. Let ψ(d, θ, λ) = c+d+λ(d−c+θ+Φ−1(2−Φ(d+c+θ)−αQc(θ))).

Furthermore, let d(θ) = max (−c− θ + Φ−1 {1− αQc(θ)} , 0), d̄(θ) = −c −

infxASrt(θ) and θ∗ = inf{θ > 0 : d(θ) = 0}. Then:

a. For 0 < θ < θ1, the region A(θ) = (−c− d?, c+ l? − d?) \ (−c, c) where

d? = arg min
d(θ)≤d≤d̄(θ)

ψ(d, θ, λ) (25)
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and where l? is determined through

1− Φ(d? + c+ θ) + 1− Φ(l? − d? + c− θ) = αQc(θ),

is a solution to the original restricted optimization problem (19).

b. On G = {(d, θ) : d(θ) < d < d̄(θ), θ > 0} ∪ {(0, θ) : θ∗ < θ < θ1} and for

any fixed λ > 0, the derivative of ψ with respect to d exists, is continuous

in d and θ, and is a strictly increasing function in d for any fixed θ and in

θ for any fixed d.

c. For any fixed λ > 0, there exists θ ∈ (θ∗, θ1) for which

∂

∂d
ψ(d, θ, λ)∣∣∣

d=0

= 0.

d. For fixed 0 < θ < θ∗ and for fixed λ > 0, there exists d ∈
(
d(θ), d̄(θ)

)
such

that ∂
∂d
ψ(d, θ, λ) = 0.

Proof of Claim. a. Note that no region with a given extension d to the right of

−c is better (in terms of (19)) than (x1, x2)\ [−c, c], where −c−x1 = d and

x2 is then set to make Pθ (A(θ)) = 1 − α. That the part left of −c should

be an interval with a right end at −c is obvious. As for the part which lies

to the right of c, first note that we may consider only d < −c− infS xA(θ),

since larger d would increase both terms in (19). Now, from section 2, as

long as 0 < θ < θ1, ASrt(θ) = {x : fθ(x) > Kθ}, where Kθ < fθ(−c). Since
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for any d < −c− infxASrt(θ),

(−c− d,−c) ∪ {x : fθ(x) > fθ(c)} ( ASrt(θ),

we conclude that given any d < −c − infxASrt(θ), the shortest region to

the right of c we can possibly choose to hold the rest of the probability is

an interval with a left end at −c.

Let there now be 0 < θ < θ1. By the discussion above, we may consider only

candidates A(θ) of the form (x1, x2) \ [−c, c], each of which is characterized

by the extension d to the right of −c. The total length l = l(θ) of A(θ) is

determined by d through

1− Φ(d+ c+ θ) + 1− Φ(l − d+ c− θ) = αQc(θ). (26)

Solving for l and plugging the expression in for |A(θ)|, (19) can be rewritten

in terms of d as

d?(θ) = arg min
d
{c+ d+ λ

(
d− c+ θ + Φ−1(2− Φ(c+ θ + d)− αp(c, θ))

)
,

(27)

where

max
(
−c− θ + Φ−1 {1− αQc(θ)} , 0

)
≤ d ≤ −c− inf

x
ASrt(θ). (28)

Here the lower bound is the minimal value d has to take in order for A(θ)

to satisfy the coverage requirement.
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b. Let G1 = {(d, θ) : d(θ) < d < d̄(θ), θ > 0} and G2 = {(0, θ) : θ∗ < θ < θ1}.

Then ψ is obviously defined on G1, and since Φ(c + θ) + αQc(θ) > 1 for

θ > θ∗, it is also defined on G2. Hence ψ is defined on G = G1 ∪G2. Now,

for any (d, θ) ∈ G, we have

∂

∂d
ψ(d, θ, λ) = 1 + λ

(
1− φ(c+ d+ θ)

φ(Φ−1(2− Φ(c+ d+ θ)− αQc(θ)))

)
, (29)

which is a continuous function of d and θ. Moreover, one can easily verify

that on G, the numerator of the quotient in (29) is strictly decreasing, while

the denominator is strictly increasing, in d for any fixed θ and in θ for any

fixed d.

c. {θ : (0, θ) ∈ G} = (θ∗, θ1), and on that set

∂

∂d
ψ(0, θ, λ) = 1 + λ

(
1− φ(c+ θ)

φ(Φ−1(2− Φ(c+ θ)− αQc(θ)))

)
. (30)

Using the fact that θ∗ and θ1 are the values of θ which solve, respectively,

1− Φ(c+ θ) = αQc(θ)

and

2(1− Φ(c+ θ)) = αQc(θ),

it is easy to verify that for any λ > 0, the expression on the right hand side

of (30) tends to −∞ as θ −→ θ∗ from the right, and tends to 1 as θ −→ θ1

from the left. By continuity, it must vanish for some intermediate value.
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d. Using the fact that d(θ) is the value of d such that

1− Φ(c+ d+ θ) = αQc(θ)

and d̄(θ) is the value of d such that

2 (1− Φ(d+ c+ θ)) = αQc(θ),

one can easily verify that ∂
∂d
ψ(d) −→ −∞ as d −→ d(θ) from the right,

and ∂
∂d
ψ(d) −→ 1 as d −→ d̄(θ) from the left. Therefore, there must be

some d ∈
(
d(θ), d̄(θ)

)
such that ∂

∂d
ψ(d) = 0.

Returning to the proof of our proposition, for any 0 < θ < θ1 we first

need, by (a), to obtain the minimizer in (19). From (c) and (b), there exists

a unique value of θ, denoted by θ′1, which satisfies (21). It also follows from

(c) and (b) that for θ′1 < θ < θ1, ∂
∂d
ψ(d, θ, λ) > 0 for any d > 0. Therefore, in

that case the minimizer is necessarily d = 0. As for 0 < θ < θ′1, we distinguish

between two cases. If 0 < θ < θ∗, by (b) and (d), the value of d for which

∂
∂d
ψ(d, θ, λ) = 0 is the minimum. If θ∗ < θ < θ′1, then by (b) we have that

∂
∂d
ψ(0, θ, λ) < ∂

∂d
ψ(0, θ′1, λ) = 0 and ∂

∂d
ψ(d, θ, λ) −→ 1 as d −→ d̄(θ) from the

left (as shown in the proof of (d)), thus, by (b), the value of d for which the

derivative vanishes is again the unique minimum.

The expressions in (20) for 0 < θ < θ1 and those in (23) and (24) are

an immediate consequence of the description in (a) of an optimal acceptance
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region once the minimizer d∗ is known.

Having obtained the above expressions for ACQC(θ), we now derive the

corresponding confidence intervals by inversion.

4.2 Inverting the Acceptance Regions

The convex hull of the set {θ : x ∈ ACQC(θ)}, where ACQC(θ) is given in (20),

is

SCQC(X) =



(−l1(X), u(X)), 0 < X < c̄λ(0)

[0, u(X), c̄λ(0) < X < cα/2

(0, u(X)), cα/2 < X < c̃λ(0)

(l2(X), u(X)), c̃λ(0) < X < c̃λ(θ
′
1)

SSrt(X), X > c̃λ(θ
′
1),

(31)

with SCQC(X) = −SCQC(−X) for X < 0 and where

(i) c̄λ(0) = supθ<0 supA(θ) and is the value of x for which

1 + λ

(
1− φ(c+ d)

φ(Φ−1(2− Φ(c+ d)− αQc(0)))

)∣∣∣
d=x−c

= 0

(ii) cα/2 = supxA(0)

(iii) c̃λ(0) = infθ>0 supxA(θ) = Φ−1{2− Φ(c̄λ(0))− αQc(0)}
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(iv) c̃λ(θ
′
1) = supxA(θ′1) = θ′1 + Φ−1 {Φ(c− θ′1) + (1− α)Qc(θ

′
1)}

(v) l1(x) is the value of θ such that

1 + λ

(
1− φ(c+ d+ θ)

φ(Φ−1(2− Φ(c+ d+ θ)− αQc(θ)))

)∣∣∣
d=x−c

= 0

(vi) l2(x) is the value of θ for which

1+λ

(
1− φ(c+ d+ θ)

φ(Φ−1(2− Φ(c+ d+ θ)− αQc(θ)))

)∣∣∣
d=−c−θ+Φ−1{2−Φ(x−θ)−αQc(θ)}

= 0

(vii) u(x) is the value of θ for which

2 (1− Φ(θ − x)) = αQc(θ).

4.3 Relationship between λ and the maximum length of

the confidence interval

We assumed a given value for λ, and derived a family of acceptance regions

which yield a confidence interval per that particular value of λ. Ideally, though,

we would like to constraint the maximal length of the interval, which is con-

ceptually easier to quantify, and let it dictate a corresponding value for λ,

which in turn determines the acceptance region.

In the unimodal, symmetric case, because of the relatively simple structure

of the optimal acceptance regions, it was fairly easy to show that the QC inter-
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b.  CQC Confidence Intervals
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Figure 4: (a) Conditional Quasi-Conventional acceptance regions for λ = .4.
Critical values θ′1, θ1 and θ2 are 1.02, 1.18 and 2.67, respectively. (b) Con-
ditional Quasi-Conventional confidence intervals for λ = .4. Critical points
c̄.4(0), cα/2, c̃.4(0) and c̃.4(θ′1) are 2.23, 2.41, 2.74 and 3.59, respectively. The
boundaries of the standard (unadjusted) confidence interval are plotted with
dashed lines. Compared to the CMP method with r = .4, the CQC interval
(weakly) determines the sign starting at c̄.4(0) = 2.23, while the CMP inter-
val does it slightly earlier, starting at c̄1.4(0) = 2.15. While the length of the
CMP interval is approximately 5.49 for big x, the CQC interval approaches
the length of the standard, unadjusted interval, 2z1−α/2 = 3.92. as x→∞.
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val always has maximal length greater than 2z1−α/2 and to specify the family

of QC acceptance regions corresponding to a confidence interval with maximal

length (across all x values) of r times the length of the conventional interval,

for r > 1. In our conditional case θ is no longer a mere location parame-

ter, and the family of optimal acceptance regions no longer admit the simple

sturcture as before. This makes the relationship between the maximal length

of the CQC interval and λ much more complicated and difficult to analyze

analytically. Nevertheless, since it is reasonable to expect the CQC interval

to be longer than the Shortest-AR interval ”for most x”, it is interesting to

numerically investigate how much worse it really does. Since our reference,

the Shortest-AR interval, now has different lengths for different values of x,

we coose as a measure of comparison the quantity

gc(λ) = sup
x
{|SλCQC(x)|/|SSrt(x)|} (32)

and evaluate it over a range of λ values. Figure 5 shows gc(λ) as a function of λ

for different values of c. In practice, |SλCQC(x∗)|/|SSrt(x∗)| for x∗ = c̃λ(θ
′
1)− ε

(with ε = 10−5) was taken as gc(λ), since simulations imply that gc(θ) =

limt→x∗ |SλCQC(t)|/|SSrt(t)| from the left.

Remark For each of the three methods discussed above, the endpoints

L(x) and U(x) of the confidence interval are monotone nondecreasing in x

for x > c (nonincreasing x for x < −c), as can be observed in the above

figures. Apart from the fact that the convex hull is taken upon inversion of the

acceptance regions, this property is ensured by the facts that (i) A(θ)∩{x > c}
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Figure 5: gc(λ) as a function of λ for c = 1, 1.5 and 2. The quantity
|SλCQC(x∗)|/|SSrt(x∗)| for x∗ = c̃λ(θ

′
1)− ε (with ε = 10−5) was taken as gc(λ).

is always an interval and (ii) l(θ) = inf{x > c : x ∈ A(θ)} is nondecreasing with

limθ→−∞ l(θ) = c. That U(x) is nondecreasing is trivial from (ii); This is also

the case for L(x), since, letting ū(θ) = supθ′≤θ supxA(θ′) (the upper envelope

of u(θ)), we have from (i) and (ii) that L(x) := inf{θ : x ∈ A(θ)} = inf{θ :

ū(θ) > x}, which is a nondecreasing function of x since ū is nondecreasing.

5 Example

In an ongoing experiment on the response to stress as reflected in brain activ-

ity and connectivity as measured by functional magnetic resonance imaging,

subjects were exposed to two segments of movies that differed in the level

of stress they project. Both the activity at voxels in the brain and the level

of Cortisol in their blood were recorded while being exposed to the differing

segments. The Cortisol levels, which are known to reflect the level of stress
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exposure, were log-transformed before taking the difference per subject. The

resulting distribution of the estimates is quite Gaussian. The difference in

activity level was estimated from a generalized linear model. The results per

voxel, as inspected for a sample of voxels, are again quite symmetric and close

to Gaussian. One of the questions that interests us is the correlation between

the difference in activity and the difference in Cortisol levels in the promising

voxels. The results for 16 subjects are available at this stage, as the study is

still ongoing (more subjects’ data will become available). For the same reason

the study has not been reported yet, so we shall avoid giving further details

about the experiment and the analysis leading to the correlations.

For our purpose it is enough to start from the 14756 correlations we have

- one for each voxel. Interest lies only with voxels for which the correlation is

high. In this case we looked at correlations larger in absolute value than 0.6,

and there were 15 positive and 21 negative such correlations. The correlations

were Fisher transformed into Gaussian variates, then CQC intervals were cal-

culated using the values σ = 1/
√

16− 3 and λ = .4. The standard unadjusted

95% marginal confidence intervals were also calculated on this scale. Both sets

of intervals were back transformed into the correlation scale and are presented

in Figure 6. The CQC intervals are given by the lines and the standard in-

tervals are marked by the tick marks. Note that all the 36 selected standard

intervals do not cover 0, excluding parameter values of the opposite sign, and

offering evidence for both high positive correlations and high negative ones.

In contrast, only the two largest correlations and the two smallest correlations

have conditional intervals that exclude correlations of opposite signs, where
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the two largest ones include 0 and the two smallest ones exclude 0. The other

32 conditional intervals extend to beyond 0, indicating there is no evidence to

exclude correlations of the other sign, based on the results at hand. Consid-

ering 36 intervals at 0.95 level we expect non-coverage by 1.8 intervals, so we

do not have yet an evidence of either positive or negative correlation from the

conditional confidence intervals. This point of view is the more realistic one

in our case.

Note also that the upper side of the confidence intervals are almost the

same as those of the standard ones. In fact, those of the CQC intervals are

just a bit shorter than those of the standard ones very close to the conditioned

upon value.

We are thankful to Prof. Talma Hendler from Tel Aviv University who

is leading this research, with whom the first author is cooperating. We are

thankful to Sharon Vaisvaser and to Yonatan Weinetraub who conducted the

analysis leading to the correlations.

6 Comparison with Other Methods

In their work concerning selection bias of estimators in genome-wide associ-

ation studies (GWAS), Zhong and Prentice (2008) suggest methods to ob-

tain confidence intervals for θ = E(Y ), where Y ∼ N(θ, σ2), upon observing

X = Y |(|Y | ≥ cσ). Because σ is assumed to be known, there is no loss of

generality in setting σ = 1.

First, they suggest using the asymptotic distribution of the log-likelihood
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CQC Intervals for Selected Correlations

Figure 6: CQC and standard (unadjusted) intervals for correlations between
Cortisol level changes in the blood and activity changes in the brain at various
locations, when viewing two movie segments. Only correlations that are greater
in absolute value than 0.6 are displayed. CQC intervals are given by the vertical
lines and the endpoints of the unadjusted standard are indicated by tick marks.
While all of the standard intervals are separated from zero, only the two largest
correlations and the two smallest ones have conditional intervals that exclude
values of opposite signs, the intervals for the two largest ones including 0 and
the ones for the two smallest ones excluding 0.
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ratio, namely

2ln(Lx(θ̂MLE)/Lx(θ0)) ∼ χ2
1,

where Lx(θ) is the likelihood of θ with respect to the conditional distribution

in 1.

To obtain acceptance regions we now take, for each θ = θ0,

ALR(θ0) =
{
x : 2ln(Lx(θ̂MLE)/Lx(θ0)) ≤ χ2

1;1−α

}
(33)

Inverting this family yields their confidence sets

SLR(X) =
{
θ : lnLX(θ) ≥ lnLX(θ̂MLE)− χ2

1;1−α/2
}
. (34)

This approximation is obviously not supposed to hold for a small sample sizes.

Even when many observations are combined into a single estimator θ̂, but then

θ is estimated conditional on
∣∣∣θ̂∣∣∣ ≥ σc, we are practically at a situation where

we attempt to construct the confidence set from just a single observation.

A Second, quantile-based, confidence interval is proposed by having each

acceptance region leave an α/2 probability on each tail :

AQB(θ0) = (tα/2;θ0 , t1−α/2;θ0) \ (−c, c), (35)

where tξ;θ0 = t :
∫ t
−∞ f(x; θ0)dx = ξ (it is the ξ percentile of X under θ = θ0).

Inverting those regions, X being the observed value, we have
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Figure 7: Confidence intervals for the Likelihood Ratio and Quantile-based
methods

SQB(X) = [θl, θu] ,

where

θl = γ :

∫ X

−∞
f(x; γ)dx = 1− α/2

and

θu = γ :

∫ X

−∞
f(x; γ)dx = α/2

Examining the acceptance regions of each of the above two methods, we

can notice that both yield confidence intervals which are roughly symmetric

around x for large values of x, as displayed by figure (7). Notice also that

the quantile-based acceptance regions are the same as those of the Shortest-
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Figure 8: Quantile-Based (dashedline) vs Conditional Quasi-Conventional
(solid line) confidence intervals. Parameter value used for the CQC interval
is λ = .4. The CQC interval makes an earlier (weak) sign determination at
the expense of a later separation from zero, and is approximately the standard,
symmetric interval for large x

Acceptance-Region ones for small θ (0 ≤ θ ≤ θ1, θ1 defined in (3)), and in

particular both methods make (weak) sign determination starting at the same

value of the observed x. We can further see in (7) that, similarly to the CMP

confidence interval, the quantile-based interval has a sharp drop towards the

origin, which is due to the separation of the acceptance regions from c at θ = θ1.

In figure (8) we can see the tradeoff between early sign determination and late

separation from zero: The CQC interval, as expected, weakly determines the

sign earlier than does the Quantile-based interval, but does it at the cost of a

later separation from zero.

Table (6) presents estimated values for the length, coverage probability

and probability of making a weak sign determination per each of the methods

discussed in the paper, through a simulation of n = 2000 samples with cutoff
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c = 1, 3 and θ = 0, 1, 3, 5. We used θ = −10−6 with the notation θ− instead

of θ = 0 in order to distinguish between a correct sign determination and a

wrong one. In terms of coverage, all methods except LR always offer the right

coverage, even if sometimes conservatively so. The LR is unstable in terms

of coverage, sometimes lower than needed (c = 1, θ = 1), sometimes higher

(c = 3, θ = 1). As can be seen, the CMP procedure , but has significantly

inflated average length when θ is big compared to the other methods (up to

30% longer). It is interesting to note that the CQC interval has a smaller

expected length for big θ (θ = 5) than do the LR and QB methods, while for

small θ its expected length is very close to that of these two methods.

The three conditional intervals offered here always enjoy, as expected,

higher power to determine the sign than do the LR and the QB methods.

with the CMP having higher power than the other two. However the power of

the CQC approaches that of the CMP as θ increases, and never falls by much.

In summary, it seems that the CQC method, while enjoying exact coverage

properties, also reaches a good overall compromise between sign determination

and expected length, across values that the conditioning constant c and the

penalty term λ may take, and across θ where it matters.

7 Generalizations

It is worth emphasizing that the only properties of the Gaussian distribution

that were used in the derivation of the confidence intervals are symmetry and

unimodality. Hence confidence intervals can be constructed with the relevant
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Table 1: Simulation estimates of the expected length (Lng), probability for
weak sign determination (PSD) and coverage probability (Cvr) for the Shortest-
acceptance-region (Srt), CCMP, CQC, Likelihood-ratio (LR) and Quantile-
based (QB) confidence intervals, and for different values of θ. The first table
gives simulated values for c = 1 and the second for c = 3. Here sample size
n = 2000, σ = 1 and the parameters of CCMP and CQC methods are r = 1.5
and λ = .4, respectively. Standard error of simulation based Cvr is bounded
by .005, and that of PSD is bounded by .01 using the binomial approximation;
standard error of Lng was estimated from the simulation data, and depends
both on the method used for the CI and on the specific value of θ, but in any
case did not exceed .01.

c = 1 θ = 0− θ = 1 θ = 3 θ = 5

Lng PSD Cvr Lng PSD Cvr Lng PSD Cvr Lng PSD Cvr

Srt 4.127 .025 .95 4.181 .146 .955 4.07 .743 .954 3.826 .996 .948

CMP 3.259 .051 .95 3.53 .236 .951 4.615 .813 .948 5.196 .999 .951

CQC 3.998 .04 .952 4.098 .203 .95 4.229 .791 .954 3.872 .998 .948

LR 3.784 .021 .955 3.922 .141 .937 4.143 .736 .945 3.969 .995 .948

QB 3.833 .025 .95 3.997 .146 .955 4.158 .743 .951 3.963 .996 .948

c = 3 θ = 0− θ = 1 θ = 3 θ = 5

Lng PSD Cvr Lng PSD Cvr Lng PSD Cvr Lng PSD Cvr

Srt 5.448 .026 .949 5.45 .11 .954 5.242 .414 .94 4.216 .902 .954

CMP 4.186 .056 .95 4.467 .18 .961 5.046 .511 .95 5.182 .934 .955

CQC 5.394 .042 .951 5.422 .154 .975 5.318 .473 .94 4.301 .924 .954

LR 4.703 .018 .962 4.837 .095 .976 5.063 .384 .971 4.574 .891 .943

QB 4.779 .026 .949 4.966 .11 .947 5.146 .414 .945 4.529 .902 .956
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constants calculated for any other distribution enjoying these properties, in-

cluding in particular the tν-distribution.

The CMP and the CQC intervals can be constructed for Gaussian distri-

butions with known standard error of (Y ) other than 1. The change is trivial:

dividing the estimator and the conditioned upon constant c by σ, calculating

the CIs and re-inflating them by σ. Yet care as to be taken as to the interpre-

tation of the constant c. If c serves as a condition on the value of the estimator,

the above is fine. If c expresses significance, say being z1−α/2, it should not

be divided by σ (or equivalently should be first multiplied by σ before being

divided.)

In spite of these two observations, the Gaussian case of unknown σ with

small sample size being estimated from the data using σ̂ presents a challenge.

Finner (1994) addresses similar issues at length when dealing with the problem

of conditional one-sided confidence intervals. He makes the important distinc-

tion between the above two cases. When c serves as a condition on signifi-

cance the problem involves using properties of the non-central t-distribution,

and when c serves as a condition on the estimated value his solution is more

complicated. In both cases the problem we face is more difficult because we

cannot rely on the symmetry of the distribution as we do. We therefore leave

this problem for future research.

Nevertheless, when the standard errors are estimated but can be used un-

der the asymptotic Gaussian regime, the proposed confidence interval can be

used. This would include one-sample mean, two-sample means difference and

regression coefficients, with large enough sample sizes; correlation coefficients
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after using Fisher’s transformation; the coefficients in a logistic regression; co-

efficients in survival analysis, and such. Other nuisance parameters that do

not interfere with the role of the parameter of interest as a location parameter,

or with the conditioning process.

8 Discussion

We have presented conditional confidence intervals, where the selection whether

to construct a confidence interval or not depends on a fixed threshold c. As

explained in the introduction, an important virtue of such confidence intervals

is their possible role in large problems of inference. When facing a family of

m parameters, it is often the case that the parameters of interest are only the

large ones, or those significantly different from 0 at some given level. All three

types of conditional intervals can be used then to set confidence intervals for

these parameters only, and the set of intervals still assures control over the

FCR. The selection rules can follow individual testing (i.e. p-value ≤ α), mul-

tiplicity adjusted testing such as Bonferroni (p-value ≤ α/m), or any other

fixed value.

However, there is some difficulty that arises from the dual interpretation

of selection via testing, which is already evident in the single parameter case.

When selecting a parameter by (unconditional) testing whether it is signifi-

cantly different from 0, the conditional confidence interval at the same level

falls below zero when|x|is close to the threshold, meaning it includes values

on both sides of 0. Benjamini and Yekutieli (2005) discuss and demonstrate
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the inevitability of this phenomenon, and further study its limiting implica-

tions when addressing multiple parameters. This is the motivation behind

their introduction of the FCR as a goal in selective inference, rather than the

conditional coverage. With this goal in mind, one may use the procedure in

Benjamini and Hochberg (1995) for multiple testing at FDR level α to select

R parameters, and set 1 − αR/2m confidence intervals on the selected ones

according to Benjamini and Yekutieli (2005). The confidence intervals on the

selected ones will not intrude into the other side of 0, even when the estimator

is close to the threshold of significance.

The conditional methods in this paper do not cover the situations where

the selection rule for each parameter depends on the value of the estimators

of the other parameters as well. Therefore they do not cover the case where

the threshold is chosen according to the results of the above FDR controlling

testing, or any other step-up or step-down or other adaptive multiple testing

procedure controlling whatever criterion. Extension of the current theory to

such problems is highly desirable. Still, in large problems, under the asymp-

totic mixture model where each parameter is either 0 with probability 1− pm

or comes from distribution F1 with probability pm and lim pm = p > 0, the

FDR threshold of Benjamini and Hochberg (1995) converges in probability

to a constant (e.g. Genovese and Wasserman, 2002). So we can assume the

properties of the conditional intervals will not change by much.

In view of that, the challenge that motivated this work is still intriguing if

but from a new perspective. We learned that it is possible to select according to

a multiple testing procedure that assures FDR control at some level, and avoid
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undue long confidence intervals when the estimators are very large. But can

we achieve both goals and avoid including 0 in the confidence intervals when

the estimator is near the significance threshold? It seems that in order to

succeed in achieving both goals, some modification of the selection procedure

should perhaps be considered.

9 Appendix

9.1 Obtaining the Shortest Acceptance Regions

For θ = 0, A(θ) is obviously symmetric around 0, because of symmetry

and unimodality of gθ. To obtain the form of the shortest region for θ >

0, we make the following simple observations (wherever P(·) appears, it is

meant that the probability is taken under fθ). Denote gθ(y) = φ(y − θ),

and let S1(θ) = {x ∈ Suppfθ : gθ(x) > gθ(−c)} = (c, c + 2θ) and S2(θ) =

{x ∈ Suppfθ : gθ(x) > gθ(c)}. Then:

a. Any point in the interval S1(θ) has higher fθ density than any point outside

this interval.

b. As a function of θ, P ({x ∈ Supp(fθ) : gθ(x) > gθ(−c)}) = P ((c, c+ 2θ)) is

strictly increasing and approaches 1 as θ −→∞ (θ > 0).

c. S2(θ) is an empty set for 0 < θ ≤ c, and is a symmetric interval around θ

with its left end at c for θ > c.

d. For all θ > 0, S2(θ) ( S1(θ) and P (S2(θ)) < P (S1(θ)).
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e. As a function of θ, P (S2(·)) is (i) continuous, (ii) equals zero on 0 < θ ≤ c,

(iii) strictly increasing for θ > c and (iv) approaches 1 as θ −→∞.

f. Whenever S2(θ) is not empty, each member of S2(θ) has a higher fθ density

than any member of S1(θ) \ S2(θ), for any θ.

In the above, (a) is because on the support of fθ the density of X is

proportional to that of Y (for fixed c and θ). (b) is a consequence of (a) and

of the fact that gθ is symmetric and unimodal. For (c), we have

P((c, c+ 2θ)) =
Φ(c+ θ)− Φ(c− θ)

1− Φ(c+ θ) + 1− Φ(c− θ)
,

and both the numerator and the denominator approach 1 as θ −→ ∞. By

taking the derivative, it is easy to verify that P(S1(θ)) is strictly increasing on

θ > 0.

Assertions (d) and (e) are a consequence of the symmetry and unimodality

of gθ and of the fact that c > −c. In (f), (ii) follows trivially from (d); For

θ > c, we have

P(S2(θ)) =
2Φ(θ − c)− 1

1− Φ(c+ θ) + 1− Φ(c− θ)
.

As θ −→∞, both the numerator and the denominator approach 1, establishing

(iv). Again taking the derivative, we see that [P (S2(θ))]′ is strictly increasing

on θ > c). Finally, as θ −→ c from the right, the numerator tends to 0, while

the denominator approaches 2 − 0.5 − Φ(2c) > 0.5, hence h(θ) −→ 0, and

together with the fact that h is continuous on θ > c, we have (i).
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It follows from (b), (e) and (d) that there exist θ1 and θ2, θ1 < θ2, such

that A(θ1) = (c, c + 2θ1), A(θ2) = (c, 2θ2 − c). By (a), (b) and (e), for each

0 < θ < θ1, A(θ) is the union of the interval (c, c+2θ) and two equally spanned

extensions to the right of c + 2θ and to the left of −c that make the entire

probability captured in these components add up to 1− α. From (c), (f) and

(a), we conclude that for θ > θ2, A(θ) is a symmetric interval around θ with

its left end bigger than c.

Now that the form of the acceptance region for each θ > 0 is known, the

exact boundaries of the region are obtained by requiring that P(A(θ)) = 1−α,

and (1) results. (b) and (e) assure that θ1 and θ2 are indeed the unique

solutions to (3) and (4), respectively.

9.2 Obtaining the CMP Acceptance Regions

The discussion in section 3 which precedes the formal statement of the CMP

acceptance regions, gives a qualitative description of A(θ). To obtain the exact

expression in (11) we need to determine for which θ values A(θ) intersects

(−∞,−c) and when it is entirely contained in (c,∞), and then, distinguishing

between these two cases, obtain the desired boundaries of A(θ) as the proper

roots of the respective equations. We observe that:

a. For θ > θ1, A(θ) is contained in (c,∞).

b. Pθ (c, c+ r |ASrt(θ)|) is strictly increasing in θ on 0 < θ < θ1.

c. For 0 < θ < θ1, A(θ) intersects (−∞,−c) if and only if P (c, c+ r |ASrt(θ)|) <

1− α.
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d. Pθ([x, x+r |ASrt(θ)|+2c]c) is strictly increasing in x on x ∈ (infASrt(θ),−c).

In the above, (a) follows from the fact that for θ > θ1, the shortest retention

region is contained in (c,∞). (c) is because for θ < θ1, no region contained

in (c,∞) and of total length r |ASrt(θ)| has higher probability than (c, c +

r |ASrt(θ)|) (under θ ). (b) and (d) can be verified by taking derivatives.

Now, Pε (c, c+ r |ASrt(ε)|) < 1 − α for some 0 < ε < θ1 because of

continuity and the fact that for ε = 0, Pε(c,∞) = 0.5 < 1 − α, while

Pθ1 (c, c+ r |ASrt(θ1)|) > 1 − α because of continuity and since Pθ1(c, c +

|ASrt(θ1)|) = 1 − α. Together with continuity of Pθ (c, c+ r |ASrt(θ)|) in θ, it

follows that there exist 0 < θ̃1 < θ1 such that Pθ̃1

(
c, c+ r

∣∣∣ASrt(θ̃1)
∣∣∣) = 1−α.

By (b) we conclude that


Pθ (c, c+ r |ASrt(θ)|) < 1− α, θ < θ̃1

Pθ (c, c+ r |ASrt(θ)|) > 1− α, θ > θ̃1.

It now follows from (a) and (c) that A(θ) intersects (−∞,−c) when 0 < θ < θ̃1

and is entirely contained in (c,∞) for θ > θ̃1. Using the discussion in section 3,

(11) is true for g1(θ) and g2(θ) which satisfy (9) and (10), respectively. Finally,

g2(θ) is unique by definition, while (d) implies that there is indeed a unique

solution to (9) in (inf ASrt(θ),−c).
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